Molecular characterization of community structures and sulfur metabolism within microbial streamers in Japanese hot springs.
نویسندگان
چکیده
Community structures of submerged microbial slime streamers (SMSS) in sulfide-containing hot springs at 72 to 80 degrees C at Nakabusa and Yumata, Japan, were investigated by molecular analysis based on the 16S rRNA gene. The SMSS were classified into two consortia; consortium I occurred at lower levels of sulfide in the hot springs (less than 0.1 mM), and consortium II dominated when the sulfide levels were higher (more than 0.1 mM). The dominant cell morphotypes in consortium I were filamentous and small rod-shaped cells. The filamentous cells hybridized with fluorescent oligonucleotide probes for the domain Bacteria, the domain Archaea, and the family Aquificaceae: Our analysis of the denaturing gradient gel electrophoresis (DGGE) bands by using reverse transcription (RT)-PCR amplification with two primer sets (Eub341-F with the GC clamp and Univ907R for the Bacteria and Eub341-F with the GC clamp and Arch915R) indicated that dominant bands were phylogenetically related to microbes in the genus Aquifex: On the other hand, consortium II was dominated by long, small, rod-shaped cells, which hybridized with the oligonucleotide probe S-*-Tdes-0830-a-A-20 developed in this study for the majority of as-yet-uncultivated microbes in the class Thermodesulfobacteria: The dominant DGGE band obtained by PCR and RT-PCR was affiliated with the genus Sulfurihydrogenibium: Moreover, our analysis of dissimilatory sulfite reductase (DSR) gene sequences retrieved from both consortia revealed a high frequency of DSR genes corresponding to the DSR of Thermodesulfobacteria-like microorganisms. Using both sulfide monitoring and (35)SO(4)(2-) tracer experiments, we observed microbial sulfide production and consumption by SMSS, suggesting that there is in situ sulfide production by as-yet-uncultivated Thermodesulfobacteria-like microbes and there is in situ sulfide consumption by Sulfurihydrogenibium-like microbes within the SMSS in the Nakabusa and Yumata hot springs.
منابع مشابه
J. Gen. Appl. Microbiol., 48, 211–222 (2002)
Dense microbial mats and/or streamers of various colors (white, yellow, pink, purple, orange, red, green, etc.) develop in neutral or alkaline hot springs as follows: The color is determined by interaction between microbes in hot springs and physicochemical factors such as temperature, pH, sulfur and light (Brock, 1978; Castenholz, 1988; Hanada et al., 1995; Hiraishi et al., 1999; Jørgensen and...
متن کاملInfluence of sulfide and temperature on species composition and community structure of hot spring microbial mats.
In solfataric fields in southwestern Iceland, neutral and sulfide-rich hot springs are characterized by thick bacterial mats at 60 to 80 degrees C that are white or yellow from precipitated sulfur (sulfur mats). In low-sulfide hot springs in the same area, grey or pink streamers are formed at 80 to 90 degrees C, and a Chloroflexus mat is formed at 65 to 70 degrees C. We have studied the microbi...
متن کاملArchaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines.
The microbial diversity was investigated in sediments of six acidic to circumneutral hot springs (Temperature: 60-92 °C, pH 3.72-6.58) in the Philippines using an integrated approach that included geochemistry and 16S rRNA gene pyrosequencing. Both bacterial and archaeal abundances were lower in high-temperature springs than in moderate-temperature ones. Overall, the archaeal community consiste...
متن کاملMicrobial community structures of novel Icelandic hot spring systems revealed by PhyloChip G3 analysis.
Microbial community profiles of recently formed hot spring systems ranging in temperatures from 57°C to 100°C and pH values from 2 to 4 in Hveragerði (Iceland) were analyzed with PhyloChip G3 technology. In total, 1173 bacterial operational taxonomic units (OTUs) spanning 576 subfamilies and 38 archaeal OTUs covering 32 subfamilies were observed. As expected, the hyperthermophilic (∼100°C) spri...
متن کاملHydrogen and Primary Productivity: Inference of Biogeochemistry from Phylogeny in a Geothermal Ecosystem
The geochemical energy sources for microbial primary productivity in the >70°C geothermal springs of Yellowstone National Park have not been understood. Results from phylogenetic studies of geothermal communities indicate, unexpectedly, that hydrogen-metabolizing organisms, both known and novel, dominate these communities. Hydrogen (H2) is the basis of diverse microbial metabolisms, yet little ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 69 12 شماره
صفحات -
تاریخ انتشار 2003